Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The number of plant species with genomic and transcriptomic data has been increasing rapidly. The grasses—Poaceae—have been well represented among species with published reference genomes. However, as a result the genomes of wild grasses are less frequently targeted by sequencing efforts. Sequence data from wild relatives of crop species in the grasses can aid the study of domestication, gene discovery for breeding and crop improvement, and improve our understanding of the evolution of C4photosynthesis. Here, we used long‐read sequencing technology to characterize the transcriptomes of three C3panicoid grass species:Dichanthelium oligosanthes,Chasmanthium laxum, andHymenachne amplexicaulis. Based on alignments to the sorghum genome, we estimate that assembled consensus transcripts from each species capture between 54.2% and 65.7% of the conserved syntenic gene space in grasses. Genes co‐opted into C4were also well represented in this dataset, despite concerns that because these genes might play roles unrelated to photosynthesis in the target species, they would be expressed at low levels and missed by transcript‐based sequencing. A combined analysis using syntenic orthologous genes from grasses with published reference genomes and consensus long‐read sequences from these wild species was consistent with previously published phylogenies. It is hoped that these data, targeting underrepresented classes of species within the PACMAD grasses—wild species and species utilizing C3photosynthesis—will aid in future studies of domestication and C4evolution by decreasing the evolutionary distance between C4and C3species within this clade, enabling more accurate comparisons associated with evolution of the C4pathway.more » « less
-
The open-source and community-supported gem5 simulator is one of the most popular tools for computer architecture research. This simulation infrastructure allows researchers to model modern computer hardware at the cycle level, and it has enough fidelity to boot unmodified Linux-based operating systems and run full applications for multiple architectures including x86, Arm, and RISC-V. The gem5 simulator has been under active development over the last nine years since the original gem5 release. In this time, there have been over 7500 commits to the codebase from over 250 unique contributors which have improved the simulator by adding new features, fixing bugs, and increasing the code quality. In this paper, we give and overview of gem5's usage and features, describe the current state of the gem5 simulator, and enumerate the major changes since the initial release of gem5. We also discuss how the gem5 simulator has transitioned to a formal governance model to enable continued improvement and community support for the next 20 years of computer architecture research.more » « less
An official website of the United States government

Full Text Available